Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Concurrency and Computation: Practice and Experience ; 2022.
Article in English | Scopus | ID: covidwho-2013446

ABSTRACT

The Internet of Things (IoT) has appreciably influenced the technology world in the context of interconnectivity, interoperability, and connectivity using smart objects, connected sensors, devices, data, and appliances. The IoT technology has mainly impacted the global economy, and it extends from industry to different application scenarios, like the healthcare system. This research designed anti-corona virus-Henry gas solubility optimization-based deep maxout network (ACV-HGSO based deep maxout network) for lung cancer detection with medical data in a smart IoT environment. The proposed algorithm ACV-HGSO is designed by incorporating anti-corona virus optimization (ACVO) and Henry gas solubility optimization (HGSO). The nodes simulated in the smart IoT framework can transfer the patient medical information to sink through optimal routing in such a way that the best path is selected using a multi-objective fractional artificial bee colony algorithm with the help of fitness measure. The routing process is deployed for transferring the medical data collected from the nodes to the sink, where detection of disease is done using the proposed method. The noise exists in medical data is removed and processed effectively for increasing the detection performance. The dimension-reduced features are more probable in reducing the complexity issues. The created approach achieves improved testing accuracy, sensitivity, and specificity as 0.910, 0.914, and 0.912, respectively. © 2022 John Wiley & Sons, Ltd.

2.
Journal of Computational Design and Engineering ; 9(2):343-363, 2022.
Article in English | Web of Science | ID: covidwho-1735592

ABSTRACT

Despite the great efforts to find an effective way for coronavirus disease 2019 (COVID-19) prediction, the virus nature and mutation represent a critical challenge to diagnose the covered cases. However, developing a model to predict COVID-19 via chest X-ray images with accurate performance is necessary to help in early diagnosis. In this paper, a hybrid quantum-classical convolutional neural network (HQ-CNN) model using random quantum circuits as a base to detect COVID-19 patients with chest X-ray images is presented. A collection of 5445 chest X-ray images, including 1350 COVID-19, 1350 normal, 1345 viral pneumonia, and 1400 bacterial pneumonia images, were used to evaluate the HQ-CNN. The proposed HQ-CNN model has achieved higher performance with an accuracy of 98.6% and a recall of 99% on the first experiment (COVID-19 and normal cases). Besides, it obtained an accuracy of 98.2% and a recall of 99.5% on the second experiment (COVID-19 and viral pneumonia cases). Also, it obtained 98% and 98.8% for accuracy and recall, respectively, on the third dataset (COVID-19 and bacterial pneumonia cases). Lastly, it achieved accuracy and recall of 88.2% and 88.6%, respectively, on the multiclass dataset cases. Moreover, the HQ-CNN model is assessed with the statistical analysis (i.e. Cohen's Kappa and Matthew correlation coefficients). The experimental results revealed that the proposed HQ-CNN model is able to predict the positive COVID-19 cases.

SELECTION OF CITATIONS
SEARCH DETAIL